American Chemical Society
Browse

Self-Assembled Epitaxial Cathode–Electrolyte Nanocomposites for 3D Microbatteries

Download (393.14 kB)
journal contribution
posted on 2022-09-06, 19:05 authored by Daniel M. Cunha, Nicolas Gauquelin, Rui Xia, Johan Verbeeck, Mark Huijben
The downscaling of electronic devices requires rechargeable microbatteries with enhanced energy and power densities. Here, we evaluate self-assembled vertically aligned nanocomposite (VAN) thin films as a platform to create high-performance three-dimensional (3D) microelectrodes. This study focuses on controlling the VAN formation to enable interface engineering between the LiMn2O4 cathode and the (Li,La)TiO3 solid electrolyte. Electrochemical analysis in a half cell against lithium metal showed the absence of sharp redox peaks due to the confinement in the electrode pillars at the nanoscale. The (100)-oriented VAN thin films showed better rate capability and stability during extensive cycling due to the better alignment to the Li-diffusion channels. However, an enhanced pseudocapacitive contribution was observed for the increased total surface area within the (110)-oriented VAN thin films. These results demonstrate for the first time the electrochemical behavior of cathode–electrolyte VANs for lithium-ion 3D microbatteries while pointing out the importance of control over the vertical interfaces.

History