sc8b06472_si_002.pdf (249.94 kB)
Download file

Selective Aerobic Oxidation of Cumene to Cumene Hydroperoxide over Mono- and Bimetallic Trimesate Metal–Organic Frameworks Prepared by a Facile “Green” Aqueous Synthesis

Download (249.94 kB)
journal contribution
posted on 22.03.2019, 00:00 by Anna Nowacka, Pol Briantais, Carmelo Prestipino, Francesc X. Llabrés i Xamena
Co–Ni and Mn–Ni bimetallic trimesate MOFs prepared by a fast aqueous synthesis method are excellent and reusable catalysts for the selective aerobic oxidation of cumene to cumene hydroperoxide (CHP). Isolation of Co2+ (or Mn2+) in an inert Ni-BTC framework is a good strategy to optimize CHP selectivity above 90%: since only Co2+ sites catalyze CHP decomposition, a drop of the CHP selectivity is observed as the cobalt content in the bimetallic MOF increases. The statistical probability of having isolated Co2+ sites is calculated as a function of the total cobalt content of the bimetallic compound, assuming homogeneous distribution of Co2+ ions in the Ni-BTC framework and preferential occupation of terminal sites. Thus, in our best sample, with a Co:Ni ratio of 5:95, 73% of the total Co2+ ions are isolated so that CHP decomposition/overoxidation processes at the surface of the catalyst are not likely to occur before CHP desorption. This can explain the excellent CHP selectivity (91%) attained over this material. This “site isolation” effect is further supported by similar findings on Mn–Ni bimetallic compounds.