am6b01626_si_001.pdf (673.3 kB)

Seawater Pervaporation through Zeolitic Imidazolate Framework Membranes: Atomistic Simulation Study

Download (673.3 kB)
journal contribution
posted on 19.05.2016, 11:51 by Krishna M. Gupta, Zhiwei Qiao, Kang Zhang, Jianwen Jiang
An atomistic simulation study is reported for seawater pervaporation through five zeolitic imidazolate framework (ZIF) membranes including ZIF-8, -93, -95, -97, and -100. Salt rejection in the five ZIFs is predicted to be 100%. With the largest aperture, ZIF-100 possesses the highest water permeability of 5 × 10–4 kg m/(m2 h bar), which is substantially higher compared to commercial reverse osmosis membranes, as well as zeolite and graphene oxide pervaporation membranes. In ZIF-8, -93, -95, and -97 with similar aperture size, water flux is governed by framework hydrophobicity/hydrophilicity; in hydrophobic ZIF-8 and -95, water flux is higher than in hydrophilic ZIF-93 and -97. Furthermore, water molecules in ZIF-93 move slowly and remain in the membrane for a long time but undergo to-and-fro motion in ZIF-100. The lifetime of hydrogen bonds in ZIF-93 is found to be longer than in ZIF-100. This simulation study quantitatively elucidates the dynamic and structural properties of water in ZIF membranes, identifies the key governing factors (aperture size and framework hydrophobicity/hydrophilicity), and suggests that ZIF-100 is an intriguing membrane for seawater pervaporation.

History