posted on 2015-12-16, 21:17authored byKenneth
Evan Thompson, Caleb J. Bashor, Wendell
A. Lim, Amy E. Keating
The synthetic biology toolkit contains a growing number
of parts
for regulating transcription and translation, but very few that can
be used to control protein association. Here we report characterization
of 22 previously published heterospecific synthetic coiled-coil peptides
called SYNZIPs. We present biophysical analysis of the oligomerization
states, helix orientations, and affinities of 27 SYNZIP pairs. SYNZIP
pairs were also tested for interaction in two cell-based assays. In
a yeast two-hybrid screen, >85% of 253 comparable interactions
were
consistent with prior in vitro measurements made
using coiled-coil microarrays. In a yeast-signaling assay controlled
by coiled-coil mediated scaffolding, 12 SYNZIP pairs were successfully
used to down-regulate the expression of a reporter gene following
treatment with α-factor. Characterization of these interaction
modules dramatically increases the number of available protein interaction
parts for synthetic biology and should facilitate a wide range of
molecular engineering applications. Summary characteristics of 27
SYNZIP peptide pairs are reported in specification sheets available
in the Supporting Information and at the SYNZIP Web site [http://keatingweb.mit.edu/SYNZIP/].