ci9b01165_si_002.pdf (467.67 kB)
Download fileSTACKED – Solvation Theory of Aromatic Complexes as Key for Estimating Drug Binding
journal contribution
posted on 2020-03-19, 13:03 authored by Johannes
R. Loeffler, Monica L. Fernández-Quintero, Michael Schauperl, Klaus R. LiedlThe
use of fragments to biophysically characterize a protein binding
pocket and determine the strengths of certain interactions is a computationally
and experimentally commonly applied approach. Almost all drug like
molecules contain at least one aromatic moiety forming stacking interactions
in the binding pocket. In computational drug design, the strength
of stacking and the resulting optimization of the aromatic core or
moiety is usually calculated using high level quantum mechanical approaches.
However, as these calculations are performed in a vacuum, solvation
properties are neglected. We close this gap by using Grid Inhomogeneous
Solvation Theory (GIST) to describe the properties of individual heteroaromatics
and complexes and thereby estimate the desolvation penalty. In our
study, we investigated the solvation free energies of heteroaromatics
frequently occurring in drug design projects in complex with truncated
side chains of phenylalanine, tyrosine, and tryptophan. Furthermore,
we investigated the properties of drug-fragments crystallized in a
fragment-based lead optimization approach investigating PDE-10-A.
We do not only find good correlation for the estimated desolvation
penalty and the experimental binding free energy, but our calculations
also allow us to predict prominent interaction sites. We highlight
the importance of including the desolvation penalty of the respective
heteroaromatics in stacked complexes to explain the gain or loss in
affinity of potential lead compounds.