posted on 2022-01-19, 13:04authored byPerrine Lasserre, Banushan Balansethupathy, Vincent J. Vezza, Adrian Butterworth, Alexander Macdonald, Ewen O. Blair, Liam McAteer, Stuart Hannah, Andrew C. Ward, Paul A. Hoskisson, Alistair Longmuir, Steven Setford, Eoghan C. W. Farmer, Michael E. Murphy, Harriet Flynn, Damion K. Corrigan
SARS-CoV-2 diagnostic
practices broadly involve either quantitative
polymerase chain reaction (qPCR)-based nucleic amplification of viral
sequences or antigen-based tests such as lateral flow assays (LFAs).
Reverse transcriptase-qPCR can detect viral RNA and is the gold standard
for sensitivity. However, the technique is time-consuming and requires
expensive laboratory infrastructure and trained staff. LFAs are lower
in cost and near real time, and because they are antigen-based, they
have the potential to provide a more accurate indication of a disease
state. However, LFAs are reported to have low real-world sensitivity
and in most cases are only qualitative. Here, an antigen-based electrochemical
aptamer sensor is presented, which has the potential to address some
of these shortfalls. An aptamer, raised to the SARS-CoV-2 spike protein,
was immobilized on a low-cost gold-coated polyester substrate adapted
from the blood glucose testing industry. Clinically relevant detection
levels for SARS-CoV-2 are achieved in a simple, label-free measurement
format using sample incubation times as short as 15 min on nasopharyngeal
swab samples. This assay can readily be optimized for mass manufacture
and is compatible with a low-cost meter.