jp5115042_si_001.pdf (549.47 kB)
Download file

Rotationally Inelastic Scattering of Quantum-State-Selected ND3 with Ar

Download (549.47 kB)
journal contribution
posted on 11.06.2015, 00:00 by Ondřej Tkáč, Ashim K. Saha, Jérôme Loreau, David H. Parker, Ad van der Avoird, Andrew J. Orr-Ewing
Rotationally inelastic scattering of ND3 with Ar is studied at mean collision energies of 410 and 310 cm–1. In the experimental component of the study, ND3 molecules are prepared by supersonic expansion and subsequent hexapole state selection in the ground electronic and vibrational levels and in the jk± = 11 rotational level. A beam of state-selected ND3 molecules is crossed with a beam of Ar, and scattered ND3 molecules are detected in single final jk± quantum states using resonance enhanced multiphoton ionization spectroscopy. State-to-state differential cross sections for rotational-level changing collisions are obtained by velocity map imaging. The experimental measurements are compared with close-coupling quantum-mechanical scattering calculations performed using an ab initio potential energy surface. The computed DCSs agree well with the experimental measurements, confirming the high quality of the potential energy surface. The angular distributions are dominated by forward scattering for all measured final rotational and vibrational inversion symmetry states. This outcome is in contrast to our recent results for inelastic scattering of ND3 with He, where we observed significant amount of sideways and backward scattering for some final rotational levels of ND3. The differences between He and Ar collision partners are explained by differences in the potential energy surfaces that govern the scattering dynamics.