jp4116029_si_001.pdf (638.79 kB)
Download file

Role of Quantum Mechanical Tunneling on the γ‑Effect of Silicon on Carbenes in 3‑Trimethylsilylcyclobutylidene

Download (638.79 kB)
journal contribution
posted on 06.03.2014, 00:00 by Sharmistha Karmakar, Ayan Datta
Quantum mechanical tunneling (QMT) is increasingly being realized as an important phenomenon that can enhance the rate of reactions even at room temperature. Recently, the ability of a trimethylsilane (TMS) group to activate 1,3-H shift to a carbene from a γ-position has been demonstrated. Direct dynamical calculations (using canonical varitational transition state theory) inclusive of small curvature tunneling (CVT-SCT) show that QMT plays a decisive role in such 1,3-hydrogen migration in both the presence and absence of TMS. The presence of a TMS group reduces the activation energy of 1,3-H shift reaction via 1,3-equatorial interaction of the TMS group with the carbene. Tunneling across the smaller barrier enhances the overall forward rate of the reaction. The Arrhenius plot for the reaction shows substantial curvature in comparison to the CVT mechanism at room temperature. Arrhenius plots for the kinetic isotope effects (KIEs) for the γ-deuterated and per deuterated 3-trimethylsilylcyclobutylidene also show strong deviations from the classical over the barrier mechanism. The magnitude of the KIE is suggestive of QMT from the vibrational excited states of the carbenes.