American Chemical Society
bi5b01356_si_001.pdf (697.66 kB)

Role of F357 as an Oxygen Gate in the Oxidative Half-Reaction of Choline Oxidase

Download (697.66 kB)
journal contribution
posted on 2016-02-23, 00:00 authored by Francesca Salvi, Isela Rodriguez, Donald Hamelberg, Giovanni Gadda
Choline oxidase from Arthrobacter globiformis catalyzes the oxidation of choline to glycine betaine by using oxygen as an electron acceptor. A partially rate limiting isomerization of the reduced wild-type enzyme during the reaction with oxygen was previously detected using solvent viscosity effects. In this study, we hypothesized that the side chains of M62 and F357, located at the entrance to the active site of choline oxidase, may be related to the slow isomerization detected. We engineered a double-variant enzyme M62A/F357A. The kinetic characterization of the double-variant enzyme showed a lack of the isomerization detected in wild-type choline oxidase, and a lack of saturation with an oxygen concentration as high as 1 mM, while most other kinetic parameters were similar to those of wild-type choline oxidase. The kinetic characterization of the single-variant enzymes established that only the side chain of F357 plays a role in the isomerization of choline oxidase in the oxidative half-reaction. Molecular dynamics studies suggest that the slow isomerization related to F357 is possibly due to the participation of the phenyl ring in a newly proposed gating mechanism for a narrow tunnel, assumed to regulate the access of oxygen to the reduced cofactor.