mp3004385_si_001.pdf (48.09 kB)

Role of Electrostatic Potential in the in Silico Prediction of Molecular Bioactivation and Mutagenesis

Download (48.09 kB)
journal contribution
posted on 19.02.2016, 14:56 by Kevin A. Ford
Electrostatic potential (ESP) is a useful physicochemical property of a molecule that provides insights into inter- and intramolecular associations, as well as prediction of likely sites of electrophilic and nucleophilic metabolic attack. Knowledge of sites of metabolic attack is of paramount importance in DMPK research since drugs frequently fail in clinical trials due to the formation of bioactivated metabolites which are often difficult to measure experimentally due to their reactive nature and relatively short half-lives. Computational chemistry methods have proven invaluable in recent years as a means to predict and study bioactivated metabolites without the need for chemical syntheses, or testing on experimental animals. Additional molecular properties (heat of formation, heat of solvation and ELUMOEHOMO) are discussed in this paper as complementary indicators of the behavior of metabolites in vivo. Five diverse examples are presented (acetaminophen, aniline/phenylamines, imidacloprid, nefazodone and vinyl chloride) which illustrate the utility of this multidimensional approach in predicting bioactivation, and in each case the predicted data agreed with experimental data described in the scientific literature. A further example of the usefulness of calculating ESP, in combination with the molecular properties mentioned above, is provided by an examination of the use of these parameters in providing an explanation for the sites of nucleophilic attack of the nucleic acid cytosine. Exploration of sites of nucleophilic attack of nucleic acids is important as adducts of DNA have the potential to result in mutagenesis.