American Chemical Society
am5b01165_si_001.pdf (432.14 kB)

Robust Two-Photon Visualized Nanocarrier with Dual Targeting Ability for Controlled Chemo-Photodynamic Synergistic Treatment of Cancer

Download (432.14 kB)
journal contribution
posted on 2015-05-13, 00:00 authored by Hao Wan, Yi Zhang, Weibing Zhang, Hanfa Zou
In consideration of the intrinsic complexity of cancer, just being a delivery nanovehicle for the nanocarrier is no longer enough to fulfill requirements of dealing with cancer. In this regard, the multifunctional nanocarrier appears to be an appealing choice in cancer treatment. Herein, the novel multifunctional nanocarrier (Fe3O4-NS-C3N4@mSiO2-PEG-RGD) possessing properties of dual targeting (the peptide- and magnetism-mediated targeting), imaging (one- and two-photon modes), pH-triggered release of loaded anticancer drug, and synergistic treatment (photodynamic therapy (PDT) combined with chemotherapy) are successfully developed. The nanocarrier specifically centralizes within cancer cells with the enhanced amount through the dual targeting ability and is facilely tracked under one- and two-photon imaging modes attributed to the autofluorescence. Then, visible light irradiation-induced PDT combined with low pH-triggered chemotherapy synergistically cooperate to efficiently kill cancer cells. Following the above process, the multifunctional nanocarrier demonstrates effective inhibition of the growth of A549 and HeLa cancer cells. The efficient manipulation of Fe3O4-NS-C3N4@mSiO2-PEG-RGD also implies potential applications of the multifunctional nanocarrier in delivery of different agents. Furthermore, it might also broaden the scope of fabrication of the multifunctional nanocarrier for inhibiting the growth of cancer cells.