American Chemical Society
Browse

Robust, Antifouling, and Hydrophilic Particle-Based Double-Network Hydrogel–PVDF Interpenetrating Microfiltration Membrane

Download (1.3 MB)
journal contribution
posted on 2024-12-09, 06:15 authored by Hanyu Chen, Lixiao Nie, Dapeng Li, Min Xia, Shijun Long, Yiwan Huang, Xuefeng Li
Poly(vinylidene fluoride) (PVDF) membranes with highly hydrophilic and antifouling properties are desirable for oily wastewater treatment. Herein, we report (1) a strategy of bulk modification of PVDF by in situ integration of PVDF and a particle-based double-network (PDN) hydrogel, poly-2-acrylamido-2-methylpropanesulfonate/polyacrylamide (PAMPS/PAAm), via a strong PDN and PVDF interpenetrating polymer network (PDN–PVDF IPN) to obtain a PVDF/PDN solution and (2) the subsequent casting of it into a microfiltration membrane via spray-assisted non-solvent-induced phase separation (SANIPS). The IPN structure modulates the surface segregation behavior of the highly hydrophilic and robust PDN hydrogel in the process of SANIPS, endowing the resulting PVDF/PDN membrane with excellent bulk mechanical properties and much enhanced wettability and thereby high oil/water emulsion separation efficiency and antifouling performance. Moreover, the PVDF/PDN membrane presented good chemical stability upon soaking in strongly acidic and alkaline solutions for an extensive time. Our work expands the research in phase-inversion-based antifouling oil/water separation materials.

History