Reversal of H2O and OH- Ligand Field Strength on the
Magnetochemical Series Relative to the Spectrochemical Series.
Novel 1-equiv Water Chemistry of Iron(III) Tetraphenylporphyrin
Complexes
posted on 2000-05-02, 00:00authored byDaniel R. Evans, Christopher A. Reed
Contrary to expectations based on the spectrochemical series, H2O is found to be a significantly
weaker field ligand than OH- in the magnetochemical series ranking of ligand field strengths based on the
spin states of iron(III) tetraphenylporphyrin complexes. The preparation and characterization of the [Fe(H2O)(TPP)]+ ion and the spectroscopic identification of Fe(OH)(TPP) have made this assessment possible. These
two species were previously thought to be unattainable because of the facile formation of the well-known
μ-oxo dimer, (TPP)Fe−O−Fe(TPP). However, the special characteristics of single equivalents of water under
high acidity, relevant to metalloenzyme active sites and superacidity, make them accessible in benzene solution.
Their 1H NMR β-pyrrole chemical shifts at −43 and +82 ppm indicate admixed-intermediate S = 3/2, 5/2 and
high S = 5/2 spin states for the aqua and hydroxo species, respectively. The X-ray crystal structure of the aqua
complex has been determined for [Fe(H2O)(TPP)][CB11H6Cl6] and is consistent with the high degree of S =
3/2 character indicated by the NMR measurement, Mössbauer spectroscopy (ΔEq = 3.24 mm·s-1), and magnetic
susceptibility (μeff = 4.1 μB). The anhydrous precursor to these species is the “nearly bare” iron(III) porphyrin
complex Fe(CB11H6Br6)(TPP). Judged by its magnetic parameters (δpyrrole = −62 ppm, ΔEq = 3.68 mm·s-1,
μeff = 4.0 μB) it attains the long sought essentially “pure” S = 3/2 spin state. The magnetochemical ranking of
ligand field strengths in five-coordinate high-spin and admixed-intermediate-spin iron(III) porphyrins is useful
because it more closely reflects the intuitive field strengths of crystal field theory than does the usual
spectrochemical ranking, which is controlled largely by π effects in octahedral low-spin dπ6 complexes.