American Chemical Society
Browse

Remarkably Enhanced Phosphate Sequestration from Waters by Biochar with High-Density Quaternary Ammonium Groups

Download (367.98 kB)
journal contribution
posted on 2024-04-26, 19:04 authored by Yan Li, Lili Dong, Xingyu Ren, Hao Liu, Chenjia Zhang, Shunli Wan
A new biochar (N-BC) was fabricated by incorporating high-density positively charged quaternary ammonium groups into the pristine biochar without any adsorption for phosphate. N-BC can highly efficiently remove phosphate with an optimal pH of 5.0, a maximum experimental adsorption capacity of 30 mg of P/g, and an adsorption equilibrium time of 180 min. The predicted pore diffusion coefficient D (the diffused surface area of the adsorbate for unit time) for phosphate adsorption by N-BC was 5.3 × 10–9 cm2/s. N-BC can still capture phosphate in the copresence of anion Cl with a molar concentration 50 times that of phosphate. The exhausted N-BC was completely regenerated using a 10 wt % NaOH solution and further reused without any observable loss in adsorption capacity. Moreover, N-BC yielded ∼324 bed volumes (BV) of wastewater containing 1 mg P/L phosphate and 50 mg/L Cl before breakthrough occurring (<0.1 mg P/L in effluent) in a fixed-bed column operation system. The introduced quaternary ammonium groups covalently bound to biochar played a dominant role in phosphate sequestration by N-BC through forming the out-sphere complexation with phosphate. All results imply that it is of promising prospect for N-BC practical application for phosphate purification from waters. The present study provided a new strategy to expand the application of biochar, usually serving as an adsorbent for cationic pollutants, to the purification of anionic pollutants such as phosphate from waters.

History