American Chemical Society
es1c02871_si_001.pdf (17.2 MB)

Release of Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam Impacted Soils

Download (17.2 MB)
journal contribution
posted on 2021-10-19, 18:18 authored by Andrew C. Maizel, Stefanie Shea, Anastasia Nickerson, Charles Schaefer, Christopher P. Higgins
Per- and polyfluoroalkyl substances (PFASs) are highly mobile in the saturated subsurface, yet aqueous film-forming foam (AFFF)-impacted source zones appear to be long lasting PFAS reservoirs. This study examined the release of over one hundred anionic and zwitterionic PFASs from two AFFF-impacted surface soils under saturated conditions with packed soil columns. Perfluoroalkyl acids (PFAAs) were released more rapidly than their polyfluorinated precursors, while anionic PFASs that were present in partially uncharged states were released more slowly than PFASs that were present entirely as anions, as were zwitterionic PFASs with terminal cationic functional groups when compared with analogous zwitterions with only anionic terminal groups. Nonideal transport was observed in both per- and polyfluorinated classes, as soil column effluent concentrations of slowly released PFASs increased by up to 107-fold with sustained artificial groundwater flow. A flow-interruption experiment suggested the influence of rate-limited desorption on diverse PFAS classes, including PFAAs with as few as four perfluorinated carbons. These results suggest that during infiltration the slow, rate-limited desorption of anionic and zwitterionic PFAA precursors may result in these compounds comprising an increasingly large fraction of the remaining PFASs in AFFF-impacted surface soils.