posted on 2016-02-22, 15:23authored byPeter C. Thomas, Srinivasa R. Raghavan, Samuel P. Forry
Microfluidic devices made from poly(dimethylsiloxane) (PDMS) are gas permeable and have been used to provide accurate on-chip oxygen regulation. However, pervaporation in PDMS devices can rapidly lead to dramatic changes in solution osmotic pressure. In the present study, we demonstrate a new method for on-chip oxygen control using pre-equilibrated aqueous solutions in gas-control channels to regulate the oxygen content in stagnant microfluidic test chambers. An off-chip gas exchanger is used to equilibrate each control solution prior to entering the chip. Using this strategy, problems due to pervaporation are considerably reduced. An integrated PDMS-based oxygen sensor allows accurate real-time measurements of the oxygen within the microfluidic chamber. The measurements were found to be consistent with predictions from finite-element modeling.