cs0c03986_si_002.pdf (21.55 MB)
Download fileRegiodivergent Oxidative Cross-Coupling of Catechols with Persistent tert-Carbon Radicals
journal contribution
posted on 2020-10-20, 12:02 authored by Masumi Sugawara, Rikako Ohnishi, Tetsuya Ezawa, Mai Akakabe, Miki Sawamura, Daiki Hojo, Daisuke Hashizume, Yoshihiro Sohtome, Mikiko SodeokaOxidative
cross-coupling is a powerful synthetic strategy for forming
a carbon–carbon bond from two nucleophiles having C–H
bonds. However, controlling the coupling selectivity (homo- vs cross-coupling) and the chemo- (C–C vs C–O) and regioselectivity in the reaction of two distinct
enolizable substrates under aerobic conditions is notoriously challenging.
Here, we present a regiodivergent oxidative cross-coupling reaction
between catechols and carbonyl compounds (2-oxindoles and benzofuranones).
The oxidative cross-coupling proceeds at the C(6) position of 4-substituted
catechols under catalyst-free conditions, while the Pd(II)-BINAP-μ-hydroxo
catalyst promotes the reaction at the C(5) position. A series of mechanistic
control experiments support a homolytic aromatic substitution mechanism
for the carbon–carbon bond-forming processes in both the C(6)-
and C(5)-selective coupling reactions. Furthermore, computational
analyses suggest that Pd(II)–catecholate is a key catalytic
active species, which serves as a SOMO-phile, to facilitate the endothermic
C(5)-selective carbon–carbon bond formation and the exothermic
aerobic oxidative aromatization.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
Regiodivergent Oxidative Cross-CouplingPdvs cross-couplingsubstitution mechanismPersistent tertCarbon Radicals Oxidative cross-cou...oxidative cross-coupling proceedsenolizable substratescatalyst-free conditionscontrol experiments supportoxidative aromatizationcatecholregiodivergent oxidative cross-coup...bond