ic9b00510_si_001.pdf (3.02 MB)
Download fileRedox Tuning via Ligand-Induced Geometric Distortions at a YMn3O4 Cubane Model of the Biological Oxygen Evolving Complex
journal contribution
posted on 2019-05-16, 00:00 authored by Heui Beom Lee, Theodor AgapieThe function of proteins
involved in electron transfer is dependent
on cofactors attaining the necessary reduction potentials. We establish
a mode of cluster redox tuning through steric pressure on a synthetic
model related to Photosystem II. Resembling the cuboidal [CaMn3O4] subsite of the biological oxygen evolving complex
(OEC), [Mn4O4] and [YMn3O4] complexes featuring ligands of different basicity and chelating
properties were characterized by cyclic voltammetry. In the absence
of ligand-induced distortions, increasing the basicity of the ligands
results in a decrease of cluster reduction potential. Contraction
of Y-oxo/Y–Mn distances by 0.1/0.15 Å enforced by a chelating
ligand results in an increase of cluster reduction potential even
in the presence of strongly basic donors. Related protein-induced
changes in Ca-oxo/Ca–Mn distances may have similar effects
in tuning the redox potential of the OEC through entatic states and
may explain the cation size dependence on the progression of the S-state
cycle.