American Chemical Society
Browse
- No file added yet -

Reaction Mechanism and Selectivity Tuning of Propene Oxidation at the Electrochemical Interface

Download (1.84 MB)
journal contribution
posted on 2022-11-08, 04:30 authored by Xiao-Chen Liu, Tao Wang, Zhi-Ming Zhang, Cong-Hua Yang, Lai-Yang Li, Shimiao Wu, Shunji Xie, Gang Fu, Zhi-You Zhou, Shi-Gang Sun
Electrochemical conversion of propene is a promising technique for manufacturing commodity chemicals by using renewable electricity. To achieve this goal, we still need to develop high-performance electrocatalysts for propene electrooxidation, which highly relies on understanding the reaction mechanism at the molecular level. Although the propene oxidation mechanism has been well investigated at the solid/gas interface under thermocatalytic conditions, it still remains elusive at the solid/liquid interface under an electrochemical environment. Here, we report the mechanistic studies of propene electrooxidation on PdO/C and Pd/C catalysts, considering that the Pd-based catalyst is one of the most promising electrocatalytic systems. By electrochemical in situ attenuated total reflection Fourier transform infrared spectroscopy, a distinct reaction pathway was observed compared with conventional thermocatalysis, emphasizing that propene can be dehydrogenated at a potential higher than 0.80 V, and strongly adsorb via μ-CCHCH3 and μ32-CCHCH3 configuration on PdO and Pd, respectively. The μ-CCHCH3 is via bridge bonds on adjacent Pd and O atoms on PdO, and it can be further oxidized by directly taking surface oxygen from PdO, verified by the H218O isotope-edited experiment. A high surface oxygen content on PdO/C results in a 3 times higher turnover frequency than that on Pd/C for converting propene into propene glycol. This finding highlights the different reaction pathways under an electrochemical environment, which sheds light on designing next-generation electrocatalysts for propene electrooxidation.

History