American Chemical Society
cm9b03852_si_001.pdf (2.81 MB)

Rapid Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic Argyrodite Li6PS5Br

Download (2.81 MB)
journal contribution
posted on 2019-12-03, 15:11 authored by Ajay Gautam, Marcel Sadowski, Nils Prinz, Henrik Eickhoff, Nicolò Minafra, Michael Ghidiu, Sean P. Culver, Karsten Albe, Thomas F. Fässler, Mirijam Zobel, Wolfgang G. Zeier
Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li6PS5X (X = Cl, Br, and I), a site-disorder between the anions S2– and X has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such a disorder in Li6PS5Br can be engineered via the synthesis method. By comparing fast cooling (i.e., quenching) to more slowly cooled samples, we find that the anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with ab initio molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within 1 min of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced via quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.