American Chemical Society
Browse
jf1c04197_si_001.pdf (722.15 kB)

Rapid Analysis of Volatile Phenols from Grape Juice by Immersive Sorbent Sheet Extraction Prior to Direct Analysis in Real-Time Mass Spectrometry (DART-MS)

Download (722.15 kB)
journal contribution
posted on 2021-10-07, 20:05 authored by Jessica P. Rafson, Gavin L. Sacks
Poly­(dimethylsiloxane)-based thin-film sorbent sheets (SPMESH) have previously been used for parallel headspace (HS) extraction prior to direct analysis in real-time mass spectrometry (DART-MS) for rapid quantitation of odorants in complex matrices. However, HS-SPMESH extraction is poorly suited for less volatile odorants, e.g., volatile phenols. This report describes modifications to the previous SPMESH extraction device, which make it amenable to parallel extraction of low-volatility analytes from multiwell plates under direct immersion (DI) conditions. Optimization and validation of the DI-SPMESH-DART-MS approach were performed on four volatile phenols (4-ethylphenol, 4-ethylguaiacol, 4-methylguaiacol, and guaiacol) of relevance to the quality of grape juices. Negative-ion mode DART-MS spectra showed a series of oxygenated adducts [M + nO – H] for all analytes, but isobaric interferences could be limited for three of the four analytes by selecting an appropriate MS/MS transition. Signal suppression from nonvolatiles (sugars, acids) could be overcome by a rinse step. DI-SPMESH-DART-MS analysis of 24 samples could be performed in ∼45 min (30 min extraction, 16 min DART analysis) with 0.5–3 μg/L detection limits in aqueous and model juice solutions. In real grape juices (n = 5 cultivars), good accuracy (72–137%) could be achieved for two of the four volatile phenols initially investigated, 4-ethylphenol and 4-ethylguaiacol. However, poor accuracy was observed for guaiacol in some cultivars, and 4-methylguaiacol could not be quantitated due to interferences with other volatile phenols. Despite these limitations, DI-SPMESH-DART-MS/MS may be useful for prescreening a large number of samples prior to more selective conventional analyses.

History