American Chemical Society
jp7b07672_si_001.pdf (1.25 MB)

Radical-Pair-Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation

Download (1.25 MB)
journal contribution
posted on 2017-10-13, 00:00 authored by Daniel R. Kattnig
Birds and several other species are equipped with the remarkable ability to sense the geomagnetic field for the purpose of navigation and orientation. The primary detection mechanism of this compass sense is uncertain but appears to originate from a truly quantum process involving spin-correlated radical pairs. In order to elicit sensitivity to weak magnetic fields, such as the Earth’s magnetic field, the underlying spin dynamics must be protected from fast decoherence. In this work, we elucidate the effects of spin relaxation on a recently suggested reaction scheme involving three radicals, instead of a radical pair, doublet-quartet interconversion under magnetic interactions, and a spin-selective scavenging reaction. We show that, besides giving rise to a vastly enhanced reaction anisotropy, this extended reaction scheme is more resilient to spin relaxation than the conventional radical pair mechanism. Surprisingly, the anisotropic magnetic field effect can be enhanced by fast spin relaxation in one of the radicals of the primary pair. We discuss this finding in the context of magnetoreception. Radical scavenging can protect the spin system against fast spin relaxation in one of the radicals, thereby providing a credible model to the involvement of fast relaxing radical pairs, such as FADH/O2•–, in radical-pair based magnetoreception. This finding will help explain behavioral observations that seem incompatible with the previously proposed flavin semiquinone/tryptophanyl radical pair.