American Chemical Society
Browse
am403050s_si_001.pdf (526.19 kB)

Quaternary Zn–Ag–In–Se Quantum Dots for Biomedical Optical Imaging of RGD-Modified Micelles

Download (526.19 kB)
journal contribution
posted on 2013-11-13, 00:00 authored by Dawei Deng, Lingzhi Qu, Jian Zhang, Yuxiang Ma, Yueqing Gu
Exploring the synthesis of new biocompatible quantum dots (QDs) helps in overcoming the intrinsic toxicity of the existing QDs composed of highly toxic heavy metals (e.g., Cd, Hg, Pb, etc.) and is particularly interesting for the future practical application of QDs in biomedical imaging. Hence, in this report, a new one-pot approach to oil-soluble (highly toxic heavy metal-free) highly luminescent quaternary Zn–Ag–In–Se (ZAISe) QDs was designed. Their photoluminescence (PL) emission could be systematically tuned from 660 to 800 nm by controlling the Ag/Zn feed ratio, and their highest PL quantum yield is close to 50% after detailed optimization. Next, by using biodegradable RGD peptide (arginine–glycine–aspartic acid)-modified N-succinyl-N′-octyl-chitosan (RGD-SOC) micelles as a water transfer agent, the versatility of these quaternary ZAISe QDs for multiscale bioimaging of micelles (namely, in vitro and in vivo evaluating the tumor targeting of drug carriers) was further explored, as a promising alternative for Cd- and Pb-based QDs.

History