sc9b04492_si_001.pdf (1.43 MB)
Download file

Pyrochlore Zirconium Gadolinium Oxide Nanorods Composite Membrane for Suppressing the Formation of Free Radical in PEM Fuel Cell Operating Under Dry Condition

Download (1.43 MB)
journal contribution
posted on 12.09.2019, 17:37 by Dabin Han, Syed Imdadul Hossain, Byungrak Son, Dong Ha Lee, Sangaraju Shanmugam
A proton exchange membrane fuel cell uses perfluorosulfonic acid polymers as a proton exchange membrane but exhibits poor performance and durability under dry operating condition. Herein, we develop a composite membrane by incorporating porous inorganic filler, Zr2Gd2O7, into a perfluorosulfonic acid, Nafion. Zr2Gd2O7 nanorods (ZrGdNR) are synthesized using an electrospinning process and subsequently calcination under air atmosphere at 500 °C. The Nafion-ZrGdNR composite (Nafion-ZrGdNR) and NRE-212 membranes exhibit power densities of 858 and 695 mW cm–2, respectively, at 0.6 V under 100% relative humidity at 80 °C. At 20% relative humidity, the maximum power density of the Nafion-ZrGdNR membrane (448 mW cm–2) is 3.8 times higher than that of a commercial NRE-212 membrane (119 mW cm–2), and moreover, the Nafion-ZrGdNR membrane exhibits a fluoride emission rate of 6.9 × 10–5 ppm h–1 cm–2, which is about 240 times lower that of than the NRE-212 membrane (1670 × 10–5 ppm h–1cm–2) for 120 h of open-circuit voltage testing. The composite membrane shows high proton conductivity, superior oxidative stability, and improved mechanical strength. The outstanding performance and remarkable durability of the Nafion-ZrGdNR membrane are due to its efficient water diffusion and stability against hydroxyl radical attack, resulting in low ohmic resistance and improved membrane degradation.