American Chemical Society
am9b04664_si_001.pdf (2.09 MB)

Pyridine-Carbonitrile–Carbazole-Based Delayed Fluorescence Materials with Highly Congested Structures and Excellent OLED Performance

Download (2.09 MB)
journal contribution
posted on 2019-05-15, 00:00 authored by Jayachandran Jayakumar, Tien-Lin Wu, Min-Jie Huang, Pei-Yun Huang, Tsu-Yu Chou, Hao-Wu Lin, Chien-Hong Cheng
Three pyridine-carbonitrile–carbazole-based thermally activated delayed fluorescence (TADF) materials with highly sterically congested structures have been synthesized. The donor–acceptor-type TADF emitters (26-, 246-, and 35tCzPPC) consist of a 2,6-diphenylpyridine-3,5-dicarbonitrile core (PPC) as the acceptor and a di­(t-butyl)­carbazole-substituted phenyl group attached to C4 of the PC core as the donor. The molecules show a unique structure containing two consecutive large twisted angles along the donor and acceptor groups. The structure leads to a nearly complete space separation of the highest occupied molecular orbital and lowest unoccupied molecular orbital, a small ΔEST value, and excellent TADF property. Moreover, the 26- and 246tCzPPC dopants favor a horizontal alignment enhancing the light outcoupling of the device. In contrast, 35tCzPPC favors a perpendicular alignment reducing the light outcoupling efficiency of the device. The 246tCzPPC-based devices show external quantum efficiency as high as 29.6% because of excellent TADF property, very high photoluminescence quantum yield, and high Θ value in the thin films. The device performance is the best among the pyridine-carbonitrile-based TADF emitters.