posted on 2006-02-28, 00:00authored byAlexander I. Kuzmenko, Huixing Wu, Francis X. McCormack
We have reported that Gram-negative organisms decorated with rough lipopolysaccharide (LPS)
are particularly susceptible to the direct antimicrobial actions of the pulmonary collectins, surfactant proteins
A (SP-A) and D (SP-D). In this study, we examined the lipid and LPS components required for the
permeabilizing effects of the collectins on model bacterial membranes. Liposomes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), with or without rough Escherichia coli LPS (J5),
smooth E. coli LPS (B5), or cholesterol, were loaded with self-quenching probes and exposed to native
or oxidatively modified SP-A. Fluorescence that resulted from permeabilization of liposomes and diffusion
of dyes was assessed by microscopy or fluorimetry. Human SP-A and melittin increased the permeability
of J5 LPS/POPE liposomes, but not B5 LPS/POPE liposomes or control (POPE only) liposomes. At a
human SP-A concentration of 100 μg/mL, the permeability of the J5 LPS/POPE membranes increased
4.4-fold (p < 0.02) compared to the control with no added SP-A. Rat SP-A and SP-D also permeabilized
the J5-containing liposomes. Incorporation of cholesterol into J5 LPS/POPE liposomes at a POPE:cholesterol molar ratio of 1:0.15 blocked human SP-A or melittin-induced permeability (p < 0.05) compared
to cholesterol-free liposomes. Exposure of human SP-A to surfactant lipid peroxidation blocked the
permeabilizing activity of the protein. We conclude that SP-A permeabilizes phospholipid membranes in
an LPS-dependent and rough LPS-specific manner, that the effect is neither SP-A- nor species-specific,
and that oxidative damage to SP-A abolishes its membrane destabilizing properties. Incorporation of
cholesterol into the membrane enhances resistance to permeabilization by SP-A, most likely by increasing
the packing density and membrane rigidity.