es204131r_si_001.pdf (495.55 kB)

Proteomic Profiles of White Sucker (Catostomus commersonii) Sampled from within the Thunder Bay Area of Concern Reveal Up-Regulation of Proteins Associated with Tumor Formation and Exposure to Environmental Estrogens

Download (495.55 kB)
journal contribution
posted on 22.02.2016, 06:45 by Denina B. D. Simmons, Niels C. Bols, Bernard P. Duncker, Mark McMaster, Jason Miller, James P. Sherry
White sucker (Catostomus commersonii) sampled from the Thunder Bay Area of Concern were assessed for health using a shotgun approach to compile proteomic profiles. Plasma proteins were sampled from male and female fish from a reference location, an area in recovery within Thunder Bay Harbour, and a site at the mouth of the Kaministiquia River where water and sediment quality has been degraded by industrial activities. The proteins were characterized using reverse-phase liquid chromatography tandem to a quadrupole-time-of-flight (LC-Q-TOF) mass spectrometer and were identified by searching in peptide databases. In total, 1086 unique proteins were identified. The identified proteins were then examined by means of a bioinformatics pathway analysis to gain insight into the biological functions and disease pathways that were represented and to assess whether there were any significant changes in protein expression due to sampling location. Female white sucker exhibited significant (p = 0.00183) site-specific changes in the number of plasma proteins that were related to tumor formation, reproductive system disease, and neurological disease. Male fish plasma had a significantly different (p < 0.0001) number of proteins related to neurological disease and tumor formation. Plasma concentrations of vitellogenin were significantly elevated in females from the Kaministiquia River compared to the Thunder Bay Harbour and reference sites. The protein expression profiles indicate that white sucker health has benefited from the remediation of the Thunder Bay Harbour site, whereas white sucker from the Kaministiquia River site are impacted by ongoing contaminant discharges.

History

Exports