ac303383c_si_001.pdf (830.68 kB)

Proteome-Wide Discovery and Characterizations of Nucleotide-Binding Proteins with Affinity-Labeled Chemical Probes

Download (830.68 kB)
journal contribution
posted on 19.03.2013, 00:00 by Yongsheng Xiao, Lei Guo, Xinning Jiang, Yinsheng Wang
Nucleotide-binding proteins play pivotal roles in many cellular processes including cell signaling. However, targeted studies of the subproteome of nucleotide-binding proteins, especially protein kinases and GTP-binding proteins, remain challenging. Here, we report a general strategy in using affinity-labeled chemical probes to enrich, identify, and quantify ATP- and GTP-binding proteins in the entire human proteome. Our results revealed that the ATP/GTP affinity probes facilitated the identification of 100 GTP-binding proteins and 206 kinases with the use of low milligram quantities of lysate of HL-60 cells. In combination with the use of the stable isotope labeling by amino acids in cell culture-based quantitative proteomics method, we assessed the ATP/GTP binding selectivities of nucleotide-binding proteins at the global proteome scale. Our results confirmed known and, more importantly, unveiled new ATP/GTP-binding preferences of hundreds of nucleotide-binding proteins. Additionally, our strategy led to the identification of three and one unique nucleotide-binding motifs for kinases and GTP-binding proteins, respectively, and the characterizations of the nucleotide-binding selectivities of individual motifs. Our strategy for capturing and characterizing ATP/GTP-binding proteins should be generally applicable for those proteins that can interact with other nucleotides.