posted on 2015-12-16, 23:08authored byDuncan
G. G. McMillan, Sophie
J. Marritt, Mackenzie A. Firer-Sherwood, Liang Shi, David J. Richardson, Stephen D. Evans, Sean J. Elliott, Julea N. Butt, Lars J. C. Jeuken
Protein–protein interactions
are well-known to regulate
enzyme activity in cell signaling and metabolism. Here, we show that
protein–protein interactions regulate the activity of a respiratory-chain
enzyme, CymA, by changing the direction or bias of catalysis. CymA,
a member of the widespread NapC/NirT superfamily, is a menaquinol-7
(MQ-7) dehydrogenase that donates electrons to several distinct terminal
reductases in the versatile respiratory network of Shewanella oneidensis. We report the incorporation
of CymA within solid-supported membranes that mimic the inner membrane
architecture of S. oneidensis. Quartz-crystal
microbalance with dissipation (QCM-D) resolved the formation of a
stable complex between CymA and one of its native redox partners,
flavocytochrome c3 (Fcc3) fumarate reductase.
Cyclic voltammetry revealed that CymA alone could only reduce MQ-7,
while the CymA-Fcc3 complex catalyzed the reaction required
to support anaerobic respiration, the oxidation of MQ-7. We propose
that MQ-7 oxidation in CymA is limited by electron transfer to the
hemes and that complex formation with Fcc3 facilitates
the electron-transfer rate along the heme redox chain. These results
reveal a yet unexplored mechanism by which bacteria can regulate multibranched
respiratory networks through protein–protein interactions.