American Chemical Society
Browse

Production of Linear Octenes from Oligomerization of 1‑Butene over Carbon-Supported Cobalt Catalysts

Download (614.33 kB)
journal contribution
posted on 2016-05-04, 00:00 authored by Zhuoran Xu, Joseph P. Chada, Dongting Zhao, Carlos A. Carrero, Yong Tae Kim, Devon C. Rosenfeld, Jessica L. Rogers, Steven J. Rozeveld, Ive Hermans, George W. Huber
Linear octenes were produced in high (70–85%) selectivity from oligomerization of liquid 1-butene using carbon-supported cobalt oxide catalysts in a continuous flow reactor. The liquid products were characterized by two-dimensional gas chromatography–mass spectrometry. Above 95% of the oligomers were C8 olefins, with the other products primarily being branched C12 olefins. The linear octene products at a conversion of 9.77% decreased in selectivity according to 3-octene > trans-2-octene > cis-2-octene > 4-octene. Methyl-heptenes including trans/cis-5-methyl-2-heptene > trans/cis-5-methyl-3-heptene > trans-3-methyl-2-heptene (at the lowest conversion) were the other major products summing to 15.6%. The selectivity of linear octenes decreased from 84 to 78% as the conversion increased from 10% to 29%. The product distribution suggests the reaction pathway involves a head-to-head coupling of two 1-butene molecules to form internal linear octenes. Head-to-tail coupling of two 1-butene molecules or a coupling between 1-butene and 2-butene forms the observed methyl-heptenes. The rate of head-to-head coupling is higher than the rate of head-to-tail or the rate of 1-butene to 2-butene coupling as indicated by the higher selectivity of linear octenes. The activated catalyst contained both Co3O4 and CoO as confirmed by X-ray diffraction (XRD), in situ Raman spectroscopy, and X-ray absorption spectroscopy. The cobalt oxide particle size was estimated to be between 5 and 10 nm by high-resolution transmission electron microscopy and XRD. The Co3O4/CoO ratio decreased with increasing pretreatment temperature. Metallic cobalt, which has a low catalytic activity, formed at 550 °C.

History