ac701824u_si_002.pdf (229.26 kB)
Download file

Preparation of Bovine Serum Albumin Surface-Imprinted Submicrometer Particles with Magnetic Susceptibility through Core−Shell Miniemulsion Polymerization

Download (229.26 kB)
journal contribution
posted on 01.02.2008, 00:00 by Chau Jin Tan, Hong Gap Chua, Kwee Hong Ker, Yen Wah Tong
Molecular imprinting is a state-of-the-art technique for preparing mimics of natural, biological receptors. Nevertheless, the imprinting of macromolecules like proteins remains a challenge due to their bulkiness and sensitivity to denaturation. In this work, a surface imprinting strategy based on covalently immobilized template molecules was adopted for protein imprinting. Bovine serum albumin (BSA) surface-imprinted submicrometer particles (500−600 nm) with magnetic susceptibility were prepared through a two-stage core−shell miniemulsion polymerization system using methyl methacrylate and ethylene glycol dimethacrylate as functional and cross-linking monomers, respectively. The particles possessed a novel red blood cell-like structure and exhibited a very favorable recognition property toward the template BSA molecules in aqueous medium. In a two-protein system, the particles had shown a very high specific recognition of the template proteins over the nontemplate proteins. The magnetic susceptibility was imparted through the successful encapsulation of Fe3O4 nanoparticles. Their superparamagnetic nature increases their potential applications in the fields such as magnetic bioseparation, cell labeling, and bioimaging. In addition, the importance of template immobilization for successful protein imprinting had also been illustrated to demonstrate the potential of this approach as a general methodology for protein imprinting.