cs6b01979_si_001.pdf (2.01 MB)

Potassium-Ion-Exchanged Zeolites for Sustainable Production of Acrylic Acid by Gas-Phase Dehydration of Lactic Acid

Download (5.3 MB)
journal contribution
posted on 02.12.2016, 00:00 by Bo Yan, Li-Zhi Tao, Azhar Mahmood, Yu Liang, Bo-Qing Xu
Development of high-performance solid acid catalysts for chemicals and materials production from bioresourced feedstock has become an important research topic in heterogeneous catalysis for renewable energy and green chemistry. We provide herein a comprehensive study on the catalytic performance of various K+-exchanged zeolites (KxNa1‑xZ_y, x = 0.90–0.98) with similar molar K/Al ratios for acrylic acid (AA) production by gas-phase dehydration of lactic acid (LA) and discuss the effects of zeolite type (Z = ZSM-22, ZSM-35, MCM-22, ZSM-11, ZSM-5, ZSM-5/ZSM-11, and β) and SiO2/Al2O3 ratio (y). ZSM-5 and β are found more efficient than the other zeolites for this LA-to-AA reaction. Variation of y in the zeolite (β and ZSM-5) is shown to significantly affect the catalytic performance: not only higher AA selectivity and yield but also better catalytic stability is achieved by lowering y. A K0.97Na0.03ZSM-5_27 is then identified as the best-performing catalyst, offering very high AA selectivity (80–81 mol%) and yield (74–78 mol%) at 360 °C under high LA space velocity (WHSVLA = 2.1 h–1). This catalyst also shows a remarkable long-term stability, being capable to maintain a high AA selectivity (>70 mol%) and yield (>55 mol%) for longer than 80 h. Furthermore, an in situ calcination of the used catalyst with flowing air at 450 °C is shown to be efficient for complete catalyst regeneration. Correlating the catalyst performance with its surface acid–base property measured by NH3- and CO2-TPD clearly uncovers that balance between the surface acidity and basicity would be a key, besides Z and y of the zeolite, to the catalyst performance.

History

Exports