jo5027639_si_001.pdf (609.61 kB)

Possibility of [1,5] Sigmatropic Shifts in Bicyclo[4.2.0]octa-2,4-dienes

Download (609.61 kB)
journal contribution
posted on 06.03.2015, 00:00 by Hannelore Goossens, Johan M. Winne, Sebastian Wouters, Laura Hermosilla, Pierre J. De Clercq, Michel Waroquier, Veronique Van Speybroeck, Saron Catak
The thermal equilibration of the methyl esters of endiandric acids D and E was subject to a computational study. An electrocyclic pathway via an electrocyclic ring opening followed by a ring flip and a subsequent electrocyclization proposed by Nicolaou [Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993], was computationally explored. The free-energy barrier for this electrocyclic route was shown to be very close to the bicyclo[4.2.0]­octa-2,4-diene reported by Huisgen [Huisgen, R.; Boche, G.; Dahmen, A.; Hechtl, W. Tetrahedron Lett. 1968, 5215]. Furthermore, the possibility of a [1,5] sigmatropic alkyl group shift of bicyclo[4.2.0]­octa-2,4-diene systems at high temperatures was explored in a combined computational and experimental study. Calculated reaction barriers for an open-shell singlet biradical-mediated stepwise [1,5] sigmatropic alkyl group shift were shown to be comparable with the reaction barriers for the bicyclo[4.1.0]­hepta-2,4-diene (norcaradiene) walk rearrangement. However, the stepwise sigmatropic pathway is suggested to only be feasible for appropriately substituted compounds. Experiments conducted on a deuterated analogous diol derivative confirmed the calculated (large) differences in barriers between electrocyclic and sigmatropic pathways.