American Chemical Society
jz5b00488_si_001.pdf (803.46 kB)

Position-Dependent Three-Dimensional Diffusion in Nematic Liquid Crystal Monitored by Single-Particle Fluorescence Localization and Tracking

Download (803.46 kB)
journal contribution
posted on 2015-12-17, 07:56 authored by Seonik Lee, Koushi Noda, Shuzo Hirata, Martin Vacha
Anisotropic mass diffusion in liquid crystals (LCs) is important from the point of both basic LC physics and their applications in optoelectronic devices. We use super-resolution fluorescence microscopy with astigmatic imaging to track 3D diffusion of quantum dots (QDs) in an ordered nematic LC. The method allowed us to evaluate the diffusion coefficients independently along the three spatial axes as well as to determine the absolute position of the QD with respect to the cell wall. We found variations of the diffusion coefficient along the different directions across the cell thickness and explained these as being due to changes of a tilt angle of the LC director. Close to the surface, the diffusion is slowed down due to the confinement effect of the cell wall. Overall, the QD diffusion is much slower than expected for a corresponding particle size. This phenomenon is suggested to originate from reorientation of the LC director in the vicinity of the particle.