American Chemical Society
ao9b03142_si_001.pdf (518.44 kB)

Porous Graphene-like Carbon from Fast Catalytic Decomposition of Biomass for Energy Storage Applications

Download (518.44 kB)
journal contribution
posted on 2019-12-05, 16:13 authored by Aurora Gomez-Martin, Julian Martinez-Fernandez, Mirco Ruttert, Martin Winter, Tobias Placke, Joaquin Ramirez-Rico
A novel carbon material made of porous graphene-like nanosheets was synthesized from biomass resources by a simple catalytic graphitization process using nickel as a catalyst for applications in electrodes for energy storage devices. A recycled fiberboard precursor was impregnated with saturated nickel nitrate followed by high-temperature pyrolysis. The highly exothermic combustion of in situ formed nitrocellulose produces the expansion of the cellulose fibers and the reorganization of the carbon structure into a three-dimensional (3D) porous assembly of thin carbon nanosheets. After acid washing, nickel particles are fully removed, leaving nanosized holes in the wrinkled graphene-like sheets. These nanoholes confer the resulting carbon material with ≈75% capacitance retention, when applied as a supercapacitor electrode in aqueous media at a specific current of 100 A·g–1 compared to the capacitance reached at 20 mA·g–1, and ≈35% capacity retention, when applied as a negative electrode for lithium-ion battery cells at a specific current of 3720 mA·g–1 compared to the specific capacity at 37.2 mA·g–1. These findings suggest a novel way for synthesizing 3D nanocarbon networks from a cellulosic precursor requiring low temperatures and being amenable to large-scale production while using a sustainable starting precursor such as recycled fiberwood.