nn8b04022_si_001.pdf (988.11 kB)
Download file

Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease

Download (988.11 kB)
journal contribution
posted on 20.07.2018, 00:00 authored by Xingfu Bao, Jiahui Zhao, Jian Sun, Min Hu, Xiurong Yang
Antioxidative therapy has been considered an efficient strategy for the treatment of a series of excessive reactive oxygen species (ROS)-triggered diseases, including oxidative-stress-induced periodontal disease. However, current natural enzymes and nanozymes often show their high specificity toward given ROS and have insufficient antioxidative effects against multiple ROS generated in the diseases process. Meanwhile, multienzyme-based antioxidant defense systems are usually confined by the complicated synthesis as well as potential unwanted residue and toxicity. Various supports are highly needed to immobilize natural enzymes and antioxidants during the biorelated usages due to their low operational stability and difficulty of reuse. To overcome these limitations, we develop a high-performance platform by using biodegradable polydopamine nanoparticles (PDA NPs) as smart ROS scavengers in oxidative stress-induced periodontal disease. Although PDA-based materials are well-known to eliminate ROS both in vitro and in vivo, their antioxidative performance in periodontal disease and relative mechanisms have yet to be well-explored. In this study, PDA NPs can act as ROS scavengers in dental specialties with ideal outcomes. Spectroscopic and in vitro experiments provide strong evidence for the roles of PDA NPs in scavenging multiple ROS and suppressing ROS-induced inflammation reactions. In addition to the above investigations, the results from a murine periodontitis model clearly demonstrate the feasibility of PDA NPs as robust antioxidants with which to remove ROS and decrease periodontal inflammation without any side effects. Taken together, the results from our present study will provide valuable insight into the development of safe and efficient antioxidant defense platforms for further biomedical uses.