am9b11259_si_001.pdf (1.25 MB)

Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries

Download (1.25 MB)
journal contribution
posted on 08.11.2019, 20:46 by Suli Chen, Haiying Che, Fan Feng, Jianping Liao, Hong Wang, Yimei Yin, Zi-Feng Ma
Solid-state rechargeable batteries using polymer electrolytes have been considered, which can avoid safety issues and enhance energy density. However, commercial application of the polymer electrolyte solid-state battery is still significantly limited by the low room-temperature ionic conductivity, poor mechanical properties, and weak interfacial compatibility between the electrolyte and electrode, especially for the room-temperature solid-state rechargeable battery. In this work, a poly­(vinylene carbonate)-based composite polymer electrolyte (PVC-CPE) is reported for the first time to realize room-temperature solid-state sodium batteries with high performances. This in situ solidified PVC-CPE possesses superior ionic conductivity (0.12 mS cm–1 at 25 °C), high Na+ transference number (tNa+ = 0.60), as well as enhanced electrode/electrolyte interfacial stability. Notably, the composite cathode NaNi1/3Fe1/3Mn1/3O2 (c-NFM) is designed through the in situ growth of the polymer electrolyte inside the electrode to decrease interfacial resistance and facilitate effective ion transport in electrode/electrolyte interfaces. It is demonstrated that the solid-state c-NFM/PVC-CPE/Na battery assembled by a one-step in situ solidification method exhibits remarkably enhanced cell performances at room temperature compared with a reference NFM/PVC-CPE/Na assembled through a conventional ex situ method. The battery presents a high initial specific capacity of 104.2 mA h g–1 at 0.2 C with a capacity retention of 86.8% over 250 cycles and ∼80.2 mA h g–1 at 1 C. This study suggests that PVC-CPE is a very promising electrolyte for solid-state sodium batteries. This study also suggests a new method to design high-performance polymer electrolytes for other solid-state rechargeable batteries to realize high safety and considerable electrochemical performance at room temperature.

History