posted on 2015-12-17, 02:21authored byDenise S. Conti, Daniel Brewer, Jordan Grashik, Sumant Avasarala, Sandro R. P. da Rocha
Small interfering RNA (siRNA)-based
therapies have great promise
in the treatment of a number of prevalent pulmonary disorders including
lung cancer, asthma and cystic fibrosis. However, progress in this
area has been hindered due to the lack of carriers that can efficiently
deliver siRNA to lung epithelial cells, and also due to challenges
in developing oral inhalation (OI) formulations for the regional administration
of siRNA and their carriers to the lungs. In this work we report the
ability of generation four, amine-terminated poly(amidoamine) (PAMAM)
dendrimer (G4NH2)–siRNA complexes (dendriplexes) to silence
the enhanced green fluorescent protein (eGFP) gene on A549 lung alveolar
epithelial cells stably expressing eGFP. We also report the formulation
of the dendriplexes and their aerosol characteristics in propellant-based
portable OI devices. The size and gene silencing ability of the dendriplexes
was seen not to be a strong function of the N/P ratio. Silencing efficiencies
of up to 40% are reported. Stable dispersions of the dendriplexes
encapsulated in mannitol and also in a biodegradable and water-soluble
co-oligomer were prepared in hydrofluoroalkane (HFA)-based pressurized
metered-dose inhalers (pMDIs). Their aerosol characteristics were
very favorable, and conducive to deep lung deposition, with respirable
fractions of up to 77%. Importantly, siRNA formulated as dendriplexes
in pMDIs was shown to keep its integrity after the particle preparation
processes, and also after long-term exposures to HFA. The relevance
of this study stems from the fact that this is the first work to report
the formulation of inhalable siRNA with aerosol properties suitable
to deep lung deposition using pMDIs devices that are the least expensive
and most widely used portable inhalers. This study is relevant because,
also for the first time, it shows that siRNA–G4NH2 dendriplexes
can efficiently target lung alveolar epithelial A549 cells and silence
genes even after siRNA has been exposed to the propellant environment.