posted on 2004-02-23, 00:00authored byPerry J. Pellechia, Jinxin Gao, Yunlong Gu, Harry J. Ploehn, Catherine J. Murphy
The reaction of generation 2 and generation 4 poly(amidoamine) (PAMAM) dendrimers with K2PtCl4 was studied
by several NMR methods. The time dependency of the Pt(II) complexation was followed with 195Pt NMR for both
dendrimers and the equilibrium product was further characterized with 1H NMR, and indirectly detected 13C NMR,
in the case of the generation 2 dendrimer. After 2 days, a black precipitate of Pt(0) was observed, half the original
195Pt signal was lost, and approximately 20% of the initial Pt(II) was coordinated to the tertiary and secondary
nitrogens of the generation 2 dendrimer. The uptake of Pt(II) by the generation 4 dendrimer was much slower,
consistent with the steric crowding of the surface groups on the generation 4 dendrimer compared to the more
open generation 2. After 10 days, 80% of the Pt(II) was deep within the generation 4 dendrimer; the remaining
20% was unreacted or bound near the surface nitrogens of a single dendrimer. The location and time course of
the platinum ion uptake by the dendrimers provides valuable insight into the formation of Pt0 nanoparticles made
in the presence of dendrimers as stabilizers, visualized by atomic force microscopy.