American Chemical Society
Browse
ph3c00893_si_001.pdf (5.35 MB)

Plasmon-Determined Selectivity in Photocatalytic Transformations on Gold and Gold–Palladium Nanostructures

Download (5.35 MB)
journal contribution
posted on 2023-08-30, 17:04 authored by Zhandong Li, Sadaf Ehtesabi, Siddhi Gojare, Martin Richter, Stephan Kupfer, Stefanie Gräfe, Dmitry Kurouski
Noble metal nanostructures absorb light producing coherent oscillations of the metal’s electrons, so-called localized surface plasmon resonances (LSPRs). LSPRs can decay generating hot carriers, highly energetic species that trigger chemical transformations in the molecules located on the metal surfaces. The number of chemical reactions can be expanded by coupling noble and catalytically active metals. However, it remains unclear whether such mono- and bimetallic nanostructures possess any sensitivity toward one or another chemical reaction if both of them can take place in one molecular analyte. In this study, we utilize tip-enhanced Raman spectroscopy (TERS), an emerging analytical technique that has single-molecule sensitivity and sub-nanometer spatial resolution, to investigate plasmon-driven reactivity of 2-nitro-5-thiolobenzoic acid (2-N-5TBA) on gold and gold@palladium nanoplates (AuNPs and Au@PdNPs). This molecular analyte possesses both nitro and carboxyl groups, which can be reduced or removed by hot carriers. We found that on AuNPs, 2-N-5TBA dimerized forming 4,4′-dimethylazobenzene (DMAB), the bicarbonyl derivative of DMAB, as well as 4-nitrobenzenethiol (4-NBT). Our accompanying theoretical investigation based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) confirmed these findings. The theoretical analysis shows that 2-N-5TBA first dimerized forming the bicarbonyl derivative of DMAB, which then decarboxylated forming DMAB. Finally, DMAB can be further reduced leading to 4-NBT. This reaction mechanism is supported by TERS-determined yields on these three molecules on AuNPs. We also found that on Au@PdNPs, 2-N-5TBA first formed the bicarbonyl derivative of DMAB, which is then reduced to both bihydroxyl-DMAB and 4-amino-3-mercaptobenzoic acid. The yield of these reaction products on Au@PdNPs strictly follows the free-energy potential of these molecules on the metallic surfaces.

History