ic1c02020_si_001.pdf (589.02 kB)
Download file

Photochromic and Room Temperature Phosphorescent Donor–Acceptor Hybrid Crystals Regulated by Core-Substituted Naphthalenediimides

Download (589.02 kB)
journal contribution
posted on 14.10.2021, 17:15 authored by Yi-Ming Di, Meng-Hua Li, Ming-Hua You, Shu-Quan Zhang, Mei-Jin Lin
Donor–acceptor (D–A) hybrid crystals are an emerging kind of crystalline hybrid material composed of semiconductive inorganic donors and organic acceptors. Except for the intrinsic photochromism, recently we have reported that the anion-π polyoxometalate (POM)/naphthalenediimide (NDI) hybrid crystals could produce an interesting room temperature phosphorescence (RTP) quantum yield up to 7.2%. Herein, we extended into core-substituted NDIs and anticipated the regulation of their photochromic and RTP properties. Thus, two hybrid crystals, namely (H4BDMPy-Br2NDI)·(NMP)4·(HPW12O40) (1) and (H4BDMPy-I2NDI)·(HPW12O40) (2) (H2BDMPy-Br2NDI: N,N′-bis­(3,5-dimethylpyrazolyl)-2,6-dibromo-1,4,5,8-naphthalenediimide and H2BDMPy-I2NDI: N,N′-bis­(3,5-dimethylpyrazolyl)-2,6-diiodide-1,4,5,8-naphthalenediimide), have been synthesized from phosphotungstic anions (PW12O403–) and Br or I core-substituted NDIs. Compared to the core-unsubstituted analogues (H4BDMPy-NDI)·(NMP)4·(HPW12O40) (3), 2 with photosensitive iodine substituents is more sensitive to light, which can become discolored under natural light. As a result of the heavy-atom effect, hybrid 1 exhibits remarkable RTP with the quantum yield up to 10.2% and a lifetime of 1.14 ms.