mg2c00019_si_001.pdf (2.48 MB)
Download filePhotoactivation Properties of Self-n-Doped Perylene Diimides: Concentration-dependent Radical Anion and Dianion Formation
journal contribution
posted on 2022-04-22, 14:09 authored by Daniel Powell, Zayn Rhodes, Xinwen Zhang, Edwin J. Miller, McKenzie Jonely, Kameron R. Hansen, Chideraa I. Nwachukwu, Andrew G. Roberts, He Wang, Rodrigo Noriega, Shelley D. Minteer, Luisa Whittaker-BrooksPerylene diimides
(PDIs) have garnered attention as organic photocatalysts
in recent years for their ability to drive challenging synthetic transformations,
such as aryl halide reduction and olefin iodoperfluoroalkylation.
Previous work in this area employs spectator pendant groups attached
to the imide nitrogen positions of PDIs that are only added to impart
solubility. In this work, we employ electron-rich ammonium iodide
or ammonium hydroxide pendant groups capable of self-n-doping the
PDI core to form radical anions (R•–) and dianions (D••2–). We observe R•– formation is favored at low concentrations where aliphatic
linkers are able to freely rotate, while D••2– formation is favored at elevated
concentrations likely due to Coulombic stabilization between adjacent
chromophores in a similar manner to that of Kasha exciton stabilization.
Cyclic voltammetric measurements are consistent with steric encumbrance
increasing the Lewis basicity of anions through Coulombic destabilization.
However, sterics also inhibit dianion formation by disrupting aggregation.
Finally, femtosecond transient absorption measurements reveal that
low wavelength excitation (400 nm) preferentially favors the excitation
of R•– to the strongly
reducing doublet excited state 2[R•–]*. In contrast, higher wavelength excitation
(520 nm) favors the formation of the singlet excited state 1[N]*. These findings highlight the importance of dopant
architecture, counterion selection, excitation wavelength, and concentration
on R•– and D••2– formation,
which has substantial implications for future photocatalytic applications.
We anticipate these findings will enable more efficient systems based
on self-n-doped PDIs.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
steric encumbrance increasingsinglet excited staterich ammonium iodideimide nitrogen positionsfuture photocatalytic applicationsefficient systems baseddependent radical anioncyclic voltammetric measurementsaryl halide reductionkasha exciton stabilizationdoped perylene diimidesdianions (< bhigher wavelength excitationlow wavelength excitationexcitation wavelengthlow concentrationscoulombic stabilizationsubstantial implicationssimilar mannerrecent yearsphotoactivation propertiespdi coreorganic photocatalystsolefin iodoperfluoroalkylationlewis basicityimpart solubilitygarnered attentionfreely rotateemploy electrondoped pdisdopant architecturedisrupting aggregationcounterion selectioncoulombic destabilizationaliphatic linkersadjacent chromophores520 nm400 nm