jp7b12367_si_001.pdf (938.22 kB)
Download filePhosphorous Diffusion Through Ni2PLow Energy Diffusion Path and Its Unique Local Structure
journal contribution
posted on 2018-02-23, 00:00 authored by José Contreras-Mora, Hiroko Ariga-Miwa, Satoru Takakusagi, Christopher T. Williams, Kiyotaka AsakuraPhosphorous (P) diffusion
in bulk Ni2P was investigated
by the density functional theory (DFT) to find the origin of the low-temperature
P diffusion into the surface. The Ni2P bulk structure consists
of two types of layers, Ni3P2 and Ni3P1, stacked along the [0001] direction. Two types of P
vacancies in Ni2P were studied: V1P (P deficient in N3P2) and V2P (P
deficient in N3P1). V1P was a slightly more stable point defect
than V2P by
0.20 eV. The P diffusions to vacancies (V1P and V2P) had large diffusion barriers of more than
1 eV, except the P diffusion path along the [0001] direction through
an interstitial site in Ni3P1 (I1→2P) and
then to V1P,
which showed the lowest energy barrier of about 0.18 eV. The DFT calculations
suggested that the two adjacent vacancies (both V1P) allow the local rearrangement
of the structure to form a tetrahedral structure at the intermediate
state. We have proposed a new diffusion mechanism in the intermetallic
compound named the interstitial–vacancy diffusion mechanism.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
energy barrierV 1 Pvacancydiffusion barriersN 3 P 2N 3 P 1P diffusion pathNi 3 P 1Ni 3 P 21 eVpoint defectP diffusionsV 2 PDFT calculationsPhosphorous Diffusionbulk Ni 2 PP diffusionintermetallic compound0.20 eVP vacanciesNi 2 P bulk structureNi 2 Pdiffusion mechanismStructure Phosphoroustetrahedral structure0.18 eV