American Chemical Society
Browse
- No file added yet -

Phonon-Mediated Quasiparticle Lifetime Renormalizations in Few-Layer Hexagonal Boron Nitride

Download (972.72 kB)
journal contribution
posted on 2023-08-10, 18:08 authored by Håkon I. Røst, Simon P. Cooil, Anna Cecilie Åsland, Jinbang Hu, Ayaz Ali, Takashi Taniguchi, Kenji Watanabe, Branson D. Belle, Bodil Holst, Jerzy T. Sadowski, Federico Mazzola, Justin W. Wells
Understanding the collective behavior of the quasiparticles in solid-state systems underpins the field of nonvolatile electronics, including the opportunity to control many-body effects for well-desired physical phenomena and their applications. Hexagonal boron nitride (hBN) is a wide-energy-bandgap semiconductor, showing immense potential as a platform for low-dimensional device heterostructures. It is an inert dielectric used for gated devices, having a negligible orbital hybridization when placed in contact with other systems. Despite its inertness, we discover a large electron mass enhancement in few-layer hBN affecting the lifetime of the π-band states. We show that the renormalization is phonon-mediated and consistent with both single- and multiple-phonon scattering events. Our findings thus unveil a so-far unknown many-body state in a wide-bandgap insulator, having important implications for devices using hBN as one of their building blocks.

History