American Chemical Society
Browse
tz1c00592_si_001.pdf (455.75 kB)

Perovskite Quantum Dot Solar Cells Fabricated from Recycled Lead-Acid Battery Waste

Download (455.75 kB)
journal contribution
posted on 2021-12-06, 17:35 authored by Long Hu, Qingya Li, Yuchen Yao, Qiang Zeng, Zizhen Zhou, Claudio Cazorla, Tao Wan, Xinwei Guan, Jing-Kai Huang, Chun-Ho Lin, Mengyao Li, Soshan Cheong, Richard D. Tilley, Dewei Chu, Jianyu Yuan, Shujuan Huang, Tom Wu, Fangyang Liu
A cost-effective and environmentally friendly Pb source is a prerequisite for achieving large-scale, low-cost perovskite photovoltaic devices. Currently, the commonly used method to prepare the lead source is based on a fire smelting process, requiring a high temperature of more than 1000 °C, which results in environmental pollution. Spent car lead acid batteries are an environmentally hazardous waste; however, they can alternatively serve as an abundant and inexpensive Pb source. Due to “self-purification”, quantum dots feature a high tolerance of impurities in the precursor since the impurities tend to be expelled from the small crystalline cores during colloidal nucleation. Herein, PbI2 recycled from spent lead acid batteries via a facile low-temperature solution process is used to synthesize CsPbI3 quantum dots, which simultaneously brings multiple benefits including (1) avoiding pollution originating from the fire smelting process; (2) recycling the Pb waste from batteries; and (3) synthesizing high-quality quantum dots. The resulting CsPbI3 quantum dots have photophysical properties such as PLQY and carrier lifetimes on par with those synthesized from the commercial PbI2 due to expelling of the impurity Na atoms. The resulting solar cells deliver comparable power conversion efficiencies: 14.0% for the cells fabricated using recycled PbI2 and 14.7% for the cells constructed using commercial PbI2. This work paves a new and feasible path to applying recycled Pb sources in perovskite photovoltaics.

History