ic701433p_si_002.pdf (1.64 MB)
Download filePeriodic Trends within a Series of Five-Coordinate Thiolate-Ligated [MII(SMe2N4(tren))]+ (M = Mn, Fe, Co, Ni, Cu, Zn) Complexes, Including a Rare Example of a Stable CuII−Thiolate
journal contribution
posted on 2007-10-29, 00:00 authored by Lisa M. Brines, Jason Shearer, Jessica K. Fender, Dirk Schweitzer, Steven C. Shoner, David Barnhart, Werner Kaminsky, Scott Lovell, Julie A. KovacsA series of five-coordinate thiolate-ligated complexes [MII(tren)N4SMe2]+ (M = Mn, Fe, Co, Ni, Cu, Zn; tren =
tris(2-aminoethyl)amine) are reported, and their structural, electronic, and magnetic properties are compared. Isolation
of dimeric [NiII(SN4(tren)-RSdang)]2 (“dang”= dangling, uncoordinated thiolate supported by H bonds), using the less
bulky [(tren)N4S]1- ligand, pointed to the need for gem-dimethyls adjacent to the sulfur to sterically prevent dimerization.
All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [NiII(SMe2N4(tren)]+, are
isostructural and adopt a tetragonally distorted trigonal bipyramidal geometry favored by ligand constraints. The
nickel complex uniquely adopts an approximately ideal square pyramidal geometry and resembles the active site
of Ni-superoxide dismutase (Ni-SOD). Even in coordinating solvents such as MeCN, only five-coordinate structures
are observed. The MII−S thiolate bonds systematically decrease in length across the series (Mn−S > Fe−S >
Co−S > Ni−S ∼ Cu−S < Zn−S) with exceptions occurring upon the occupation of σ* orbitals. The copper complex,
[CuII(SMe2N4(tren)]+, represents a rare example of a stable CuII−thiolate, and models the perturbed “green” copper
site of nitrite reductase. In contrast to the intensely colored, low−spin Fe(III)−thiolates, the M(II)−thiolates described
herein are colorless to moderately colored and high−spin (in cases where more than one spin-state is possible),
reflecting the poorer energy match between the metal d- and sulfur orbitals upon reduction of the metal ion. As the
d-orbitals drop in energy proceeding across the across the series M2+ (M= Mn, Fe, Co, Ni, Cu), the sulfur-to-metal
charge-transfer transition moves into the visible region, and the redox potentials cathodically shift. The reduced
M+1 oxidation state is only accessible with copper, and the more oxidized M+4 oxidation state is only accessible for
manganese.