American Chemical Society
Browse

Paterno−Büchi Coupling of (Diaryl)acetylenes and Quinone via Photoinduced Electron Transfer

Download (351.94 kB)
journal contribution
posted on 1998-01-21, 00:00 authored by E. Bosch, S. M. Hubig, J. K. Kochi
Photoinduced coupling of an acetylene with a quinone in two wavelength regions (λDB and λCT) can be regioselective to yield a single quinone methide adduct when various diarylacetylenes (DA) and 2,6-dichlorobenzoquinone (DB) are used. Thus, the direct photoexcitation of DB at λDB = 355 nm or the specific activation of the 1:1 electron donor−acceptor complex [DA,DB] at λCT = 532 nm both lead to the transient ion-radical pair [DA•+,DB•-], which is established by time-resolved (ps,ns) spectroscopy. Competition between back electron transfer (kBET) and ion-radical pair collapse (kC) to the distonic adduct DA-DB, as described in Schemes and , limits the quantum yields for both photochemical processes in Table . The biradical nature of the distonic adduct in Scheme accommodates the various facets of acetylene reactivity and unique regioselectivity to yield the same quinone methide by both actinic processes. In a more general context, the electron-transfer mechanism established by the charge-transfer excitation of [DA,DB] provides compelling evidence that the Paterno−Büchi coupling (by direct excitation of DB) can proceed via the same sequence of reactive intermediates.

History

Usage metrics

    Journal of the American Chemical Society

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC