cs6b00517_si_001.pdf (175.2 kB)
Download filePalladium–Platinum Core–Shell Electrocatalysts for Oxygen Reduction Reaction Prepared with the Assistance of Citric Acid
journal contribution
posted on 2016-04-26, 00:00 authored by Lulu Zhang, Shangqian Zhu, Qiaowan Chang, Dong Su, Jeffrey Yue, Zheng Du, Minhua ShaoCore–shell
structure is a promising alternative to solid
platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction
reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A
simple method of preparing palladium (Pd)–platinum (Pt) core–shell
catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance
of citric acid. The Pt shell deposition involves three different pathways:
galvanic displacement reaction between Pd atoms and Pt cations, chemical
reduction by citric acid, and reduction by negative charges on Pd
surfaces. The uniform ultrathin (∼0.4 nm) Pt shell was characterized
by in situ X-ray diffraction (XRD) and high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) images combined
with electron energy loss spectroscopy (EELS). Compared with state-of-the-art
Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher
Pt mass activity and much better durability upon potential cycling.
Furthermore, both the mass activity and durability were comparable
to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method,
which is more complicated and difficult for mass production.