American Chemical Society
es026373c_si_001.pdf (103.87 kB)

PCDD/F, PCB, HxCBz, PAH, and PM Emission Factors for Fireplace and Woodstove Combustion in the San Francisco Bay Region

Download (103.87 kB)
journal contribution
posted on 2003-04-02, 00:00 authored by Brian K. Gullett, Abderrahmane Touati, Michael D. Hays
Emissions from residential fireplace and woodstove appliances burning fuels available from the San Francisco Bay area were sampled for polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs), polychlorinated biphenyls (PCBs), hexachlorobenzene (HxCBz), particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs, and the monosaccharide levoglucosan. Emission factors for these pollutants were determined, the first known characterization of this extent. Common California natural firewoods and manufactured artificial logs were tested under operating conditions intended to reflect domestic use patterns in the Bay area, which are primarily episodic burning for aesthetic reasons. Emission factors were determined by fuel type, fuel weight, mass emission rates, and energy output, highlighting differences between fuel and combustion facility type. Average PCDD/F emissions factors ranged from 0.25 to 1.4 ng toxic equivalency (TEQ)/kg of wood burned for natural wood fuels and 2.4 ng TEQ/kg for artificial logs. The natural wood emission factors are slightly lower than those which had been estimated for the U.S. inventory. Background-corrected PCBs emitted from woodstove/oak combustion (8370 ng/kg) are 3 orders of magnitude higher in mass than total PCDDs/Fs; however, their toxicity (0.014 ng TEQ/kg) is significantly lower. HxCBz emission factors varied from 13 to 990 ng/kg and were likely fuel- and appliance-specific. Relative PAH concentra tions of particle-phase compounds and emission factors were consistent with others' findings. A total of 32 PAH compounds, ranging in concentration from 0.06 to 7 mg/kg, amounted to between 0.12 and 0.38% of the PM mass, depending on the wood and facility type. Preliminary analyses suggest relationships between wood combustion markers and PCDD/F levels.