posted on 2015-08-26, 00:00authored byHui Zhu, Spencer C. Peck, Florence Bonnot, Wilfred A. van der Donk, Judith P. Klinman
Nonheme
iron oxygenases that carry out four-electron oxidations
of substrate have been proposed to employ iron(III) superoxide species
to initiate this reaction [Paria, S.; Que, L.; Paine, T. K. Angew. Chem. Int. Ed.2011, 50, 11129]. Here we report experimental evidence in support of this
proposal. 18O KIEs were measured for two recently discovered
mononuclear nonheme iron oxygenases: hydroxyethylphosphonate dioxygenase
(HEPD) and methylphosphonate synthase (MPnS). Competitive 18O KIEs measured with deuterated substrates are larger than those
measured with unlabeled substrates, which indicates that C–H
cleavage must occur before an irreversible reductive step at molecular
oxygen. A similar observation was previously used to implicate copper(II)
superoxide in the H-abstraction reactions catalyzed by dopamine β-monooxygenase
[Tian, G. C.; Klinman, J. P. J. Am. Chem. Soc.1993, 115, 8891] and peptidylglycine α-hydroxylating
monooxygenase [Francisco, W. A.; Blackburn, N. J.; Klinman, J. P. Biochemistry2003, 42, 1813].